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Theoretical Challenges

(i) Absolute mass scale:  Why mν << mu,d,e? 

• seesaw mechanism: most appealing scenario ⇒ Majorana


• GUT scale (type-I, II) vs TeV scale (type-III, double seesaw)

• TeV scale new physics (SUSY, extra dimension, U(1)´) ⇒ Dirac or Majorana


(ii) Flavor Structure: Why neutrino mixing large while quark mixing small?

• neutrino anarchy: no parametrically small number


• near degenerate spectrum, large mixing

• still alive and kicking

• possible heterotic string connection


• family symmetry: there’s a structure, expansion parameter (symmetry effect)

• mixing result from dynamics of underlying symmetry

• for leptons only (normal or inverted) 

• for quarks and leptons: quark-lepton connection ↔ GUT (normal)


• Alternative?

• In this talk: assume 3 generations, no LSND/MiniBoone/Reactor Anomaly
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Origin of Mass Hierarchy and Mixing

• In the SM: 22 physical quantities which seem unrelated

• Question arises whether these quantities can be related

• No fundamental reason can be found in the framework of SM

• less ambitious aim ⇒ reduce the # of parameters by imposing symmetries


• Grand Unified Gauge Symmetry

• seesaw mechanism naturally implemented

• GUT relates quarks and leptons: quarks & leptons in same GUT multiplets


• one set of Yukawa coupling for a given GUT multiplet ⇒ intra-family relations


• Family Symmetry 

• relate Yukawa couplings of different families


• inter-family relations ⇒ further reduce the number of parameters
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⇒ Experimentally testable correlations among physical observables



Origin of Flavor Mixing and Mass Hierarchy

• Several models have been constructed based on 

• GUT Symmetry [SU(5), SO(10)] ⊕ Family Symmetry GF   


• Family Symmetries GF based on continuous groups:

• U(1) 

• SU(2) 

• SU(3) 


• Recently, models based on discrete family symmetry groups have been constructed 

• A4 (tetrahedron)

• T´ (double tetrahedron)

• S3 (equilateral triangle)

• S4 (octahedron, cube)

• A5 (icosahedron, dodecahedron)

• ∆27 

• Q4 
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The Horizontal Symmetry

• Three families are the

same under vertical

symmetry; yet

different under

horizontal symmetry

• Zeros in the mass

matrices are protected

by a family symmetry

SU(2)F
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  Motivation:  Tri-bimaximal 
(TBM) neutrino mixing



Tri-bimaximal Neutrino Mixing

• Latest Global Fit (3σ)


• Tri-bimaximal Mixing Pattern 


• Leading Order: TBM (from symmetry) + higher order corrections/contributions


• Is TBM a good starting point?

Harrison, Perkins, Scott (1999)

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2⇧

limits for the mixing parameters [1],

sin2 ⇤12 = 0.30 (0.25� 0.34), sin2 ⇤23 = 0.5 (0.38� 0.64), sin2 ⇤13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],
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which predicts sin2 ⇤atm, TBM = 1/2 and sin ⇤13,TBM = 0. In addition, it predicts sin2 ⇤⇥,TBM = 1/3

for the solar mixing angle. Even though the predicted ⇤⇥,TBM is currently still allowed by the

experimental data at 2⇧, as it is very close to the upper bound at the 2⇧ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1⇤, 1⇤⇤ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a di⇥erent finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2⇤, and 2⇤⇤, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⇤ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ⌅ 10�3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo (March 2014)

sin2 ✓23 = 0.437 (0.374� 0.626)

sin2 ✓12 = 0.308 (0.259� 0.359)

sin2 ✓13 = 0.0234 (0.0176� 0.0295)
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Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo (2014)



SU(5) Compatibility ⇒ T′ Family Symmetry 

• Double Tetrahedral Group T´: double covering of A4

• Symmetries ⇒ 10 parameters in Yukawa sector ⇒ 22 physical 

observables

• neutrino mixing angles from group theory (CG coefficients)

• TBM: misalignment of symmetry breaking patterns


• neutrino sector: T′ → GTST2 ,  

• charged lepton sector: T′ → GT   


• GUT symmetry ⇒ contributions to mixing parameters from 
charged lepton sector

 ⇒ deviation from TBM related to Cabibbo angle θc 


• large θ13 possible with one additional singlet flavon
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angle, the corresponding mixing angle in the charged lepton sector, ⌅e
12, is much suppressed due to

the GJ relations,

⌅e
12 ⌅

⌥
me

mµ
⌅ 1

3

⌥
md

ms
⇤ 1

3
⌅c . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 ⌅� ⌅ tan2 ⌅�,TBM � ei�⌅c/3 , (19)

where the relative phase � is determined by the strengths and phases of the VEV’s, ⇧0 and ⌃⇥
0.

With ⌅c ⌅ 0.22 and (⇧0⌃⇥
0) being real, the factor ei� turns out to be very close to 1. This

deviation thus naturally accounts for the di�erence between the prediction of the TBM matrix,

which gives tan2 ⌅�,TBM = 1/2, and the experimental best fit value, tan2 ⌅�,exp = 0.429. The

o� diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

⌅13 ⌅ ⌅c/3
⇧

2 ⇤ 0.05. We note that a more precise measurement of tan ⌅� will pin down the

phase of ⇧0⌃⇥
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ⇥2u : ⇥u : 1, md : ms : mb = ⇥2d : ⇥d : 1 , (20)

where ⇥u ⌅ (1/200) = 0.005 and ⇥d ⌅ (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvd⇧0⇤0
=

�
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0 (1 + i)b 0

�(1� i)b c 0

b b 1
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Me

ybvd⇧0⇤0
=

�
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0 �(1� i)b b

(1 + i)b �3c b

0 0 1

⇥

⌃⌃⌃⌅
,

(21)

and with the choice of b ⇥ ⇧0⌃⇥
0/⇤0 = 0.00789 and c ⇥ ⌃0N0/⇤0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : m⇤ = 0.000870 : 0.143 : 1.00 . (23)
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CG’s of 
SU(5) & T´

The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ⌅ ⌥ = 0.227, s23 ⌅ A⌥2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 ⌃ 0 .
(49)

⇤

⇧
0.838 0.542 0.0583e�i227o

�0.385� 0.0345ei227o

0.594� 0.0224ei227o

0.705
0.384� 0.0346ei227o �0.592� 0.0224ei227o

0.707

⌅

⌃ (50)

⇧ |UMNS | =

⇤

⇧
0.838 0.542 0.0583
0.362 0.610 0.705
0.408 0.577 0.707

⌅

⌃ (51)

J� = �0.00967 (52)

Charged lepton diagonalization matrix:
⇤

⇧
0.997ei177o

0.0823ei131o

1.31⇤ 10�5e�i45o

0.0823ei41.8o

0.997ei176o

0.000149e�i3.58o

1.14⇤ 10�6 0.000149 1

⌅

⌃ (53)

sin2 2⌃atm = 1, tan2 ⌃⇤ = 0.419, |Ue3| = 0.0583 (54)

tan2 ⌃⇤ ⌃ tan2 ⌃⇤,TBM +
1
2
⌃c cos ⌅ (55)
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M.-C. C., J. Huang, K.T. Mahanthappa, A. Wijiangco (2013)

M.-C.C, K.T. Mahanthappa (2007, 2009)
Flavor Model Structure: A4 Example

• interplay between the symmetry breaking patterns 
in two sectors lead to lepton mixing (BM, TBM, ...)

• symmetry breaking achieved through flavon VEVs

• each sector preserves different residual symmetry

• full Lagrangian does not have these residual 
symmetries

• general approach: include high order terms in 
holomorphic superpotential

• possible to construct models where higher order 
holomorphic superpotential terms vanish to ALL 
orders

• quantum correction?
⇒ uncertainty in predictions due to                                     

     Kähler corrections

13

GF

Ge Gν

charged lepton 
sector
e.g. Z3 

subgroup of A4

neutrino
 sector
e.g. Z2 

subgroup of A4

�Φe� �Φν�

� Φe�∝ (1,0,0) � Φν�∝ (1,1,1)

e.g. A4

Leurer, Nir, Seiberg (1993); Dudas, 
Pokorski, Savoy (1995); Dreiner, 
Thomeier (2003);  

Mu-Chun Chen, UC Irvine                                                         Theory of Lepton Flavour                                                                           Blois 2014δ ⋍ 227o
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⇒ small predicted region 
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“Large” Deviations from TBM in A4 

• Generically: corrections on the order of (θc)2  

• from charged lepton sector: 


• through GUT relations

• from neutrino sector: 


• higher order contributions in superpotential


• Modifying the Neutrino sector:  Different symmetry breaking patterns

• TBM: misalignment of 


• A4 → GTST2     and  A4 → GT   

• A4: group of order 12 ⇒ many subgroups


• systematic study of breaking into other A4 subgroups


M.-C.C, J. Huang, J. O’Bryan, A. Wijangco, F.  Yu, (2012)

Flavor Model Structure: A4 Example

• interplay between the symmetry breaking patterns 
in two sectors lead to lepton mixing (BM, TBM, ...)

• symmetry breaking achieved through flavon VEVs

• each sector preserves different residual symmetry

• full Lagrangian does not have these residual 
symmetries

• general approach: include high order terms in 
holomorphic superpotential

• possible to construct models where higher order 
holomorphic superpotential terms vanish to ALL 
orders

• quantum correction?
⇒ uncertainty in predictions due to                                     

     Kähler corrections

13
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 sector
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subgroup of A4

�Φe� �Φν�

� Φe�∝ (1,0,0) � Φν�∝ (1,1,1)

e.g. A4
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“Large” Deviations from TBM in A4 

• Different A4 breaking patterns:


                          


9

invertednormal

M.-C.C, J. Huang, J. O’Bryan, A. Wijangco, F.  Yu, (2012)

non-maximal θ23 ➩ normal hierarchydeviations 
correlated mass ordering ➩ symmetry breaking patterns



“Large” Deviations from TBM in A4 

• Correlation between Dirac CP phase and θ13:


                          


10

M.-C.C, J. Huang, J. O’Bryan, A. Wijangco, F.  Yu, (2012)

            

correlations 
⇕ 

 symmetry 
breaking pattern



Another Example: A5 

• Correlations among different mixing parameters


                          


11

P. Ballett, S. Pascoli, J. Turner (2015)
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Ge ✓12 ✓23 sin↵ji �

Z3 35.27� + 10.13� r2 45� 0
90�

270�

Z5 31.72� + 8.85� r2
45� ± 25.04� r 0

0�

180�

45� 0
90�

270�

Z2 ⇥ Z2 36.00� � 34.78� r2
31.72� + 55.76� r 0

0�

180�

58.28� � 55.76� r 0
0�

180�

TABLE I. Numerical predictions for the correlations found
in this paper. The dimensionless parameter r ⌘ p

2 sin ✓13 is
constrained by global data to lie in the interval 0.19 . r .
0.22 at 3�. The predictions for ✓12 and ✓23 shown here ne-
glect terms of order O�

r4
�
and O�

r2
�
, respectively. Following

the method of this paper, the Majorana phases can only be
predicted modulo ⇡ and the values in the fourth column hold
for all phases.

exploring the NH region experimentally is beyond the
scope of any planned experiment, if 0⌫�� decays are not
observed and oscillation physics establishes that the neu-
trino masses are NO, it would be of paramount impor-
tance to try and test |mee| values in the NH region. Due
to the rich interplay between relative phases, these mod-
els make quite di↵erent predictions across this parameter
space. In fact, all mixing angle patterns discussed in this
paper could accommodate a value of |mee| near the top of
the current NH region allowed by global data. Although
such an observation would add further support to any
prediction of this paper which was still consistent with
experimental data, to further discriminate between these
models it would be necessary to provide complementary
information on the absolute mass scale.

V. CONCLUSIONS

Assessing the viability of flavour symmetric models of
the leptonic sector is an accessible target for precision
measurements from present and future neutrino oscilla-
tion experiments. In this article, we have presented a
detailed analysis of a particular theoretical scenario: the
flavour symmetry A5 with a generalised CP symmetry
breaking into residual subgroups at low energies. We
have identified the most general form of the generalised
CP transformation, and studied the full group for con-
sistent residual symmetries. Our analysis results in 6
distinct sets of mixing angle predictions each with an
additional 8 possible combinations of phases which are
shown in Table I. These depend at most on a single real
parameter, and predict testable correlations between cer-
tain parameters. In addition, the Majorana phases for all
of our predictions are CP conserving. These patterns can
be classified by the residual symmetry in the charged-

lepton mass terms: Z3, Z5 and Z2 ⇥ Z2. A symmetry
of Z3 predicts maximal ✓23, maximal CP violation from
� and a value of ✓12 that lies close to the upper bound-
ary of the 3� global fit data. There are two distinct pat-
terns which arise from a preserved Z5 residual symmetry.
These share a common ✓12 prediction which lies close to
the lower boundary of the 3� global fit data; however,
one prediction has maximal ✓23 and a maximally CP vi-
olating value of � whilst the other has non-maximal ✓23
and CP conserving values of �. The patterns arising from
a preserved subgroup Z2 ⇥ Z2 also share a common ✓12
which lies above the current 1� region. In this case both
✓23 predictions are non-maximal and the value of � is
CP-conserving.
We have then discussed the phenomenology of our pre-

dictions, focusing on the role which current and future
reactor, superbeam and neutrinoless double beta decay
experiments can play. The predictions for ✓12 should be
testable at high significance by the next generation of
reactor neutrino experiments, such a JUNO and RENO-
50. These experiments can be expected to distinguish
between the di↵erent models; however, testing the pre-
cise correlations between ✓12 and ✓13 will most proba-
bly remain beyond the reach of any foreseen experiment.
A particularly interesting feature of the patterns found
in this paper is the correlated maximality of ✓23 and �,
and also non-maximal ✓23 and CP conserving values of
�. Testing these correlations is a feasible goal for current
and future superbeam experiments. T2K and NO⌫A can
be expected to collect early evidence if such a pattern ob-
tains, and we have shown that DUNE will be able to iden-
tify such a pattern over a significant part of the parame-
ter space. For the CP conserving patterns, the deviations
from ✓23 = ⇡/4 are expected to be measureable at 3� by
the next generation of superbeams for the preserved sub-
group Z5, but not for Z2 ⇥ Z2. Ultimately separating
between these models at 3� significance across the whole
parameter space could be done using a Neutrino Factory
after 10 years of data taking. An attractive feature of the
theoretical scenario in this work is its ability to predict
Majorana phases, and therefore, observables for neutri-
noless double beta decay experiments. We have seen that
in the case of inverted mass ordering, two of the possi-
ble Majorana phase combinations predict the discovery
of neutrinoless double beta decay at upcoming experi-
ments. In the longer term, the exploration of the full
parameter space for inverted hierarchical mass spectra
could allow all of our patterns with this mass spectrum
to be confirmed independently of oscillation physics.

In conclusion, we find that the combination of the
flavour symmetry A5 with a generalised CP symmetry
allows for a number of viable predictions to be made for
the mixing angles and phases. These predictions spec-
ify parameter correlations which present good targets for
each stage of the next decade of the experimental pro-
gramme.

Note added: During the final preparations of this ar-
ticle, preprints of two similar works were made available
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Corrections to Kinetic Terms

• Corrections to the kinetic terms induced by family symmetry breaking generically are 
present, should be properly included

• can be along different directions than RG corrections

• dominate over RG corrections (no loop suppression, copious heavy states)

• only subdominant for quark flavor models

• sizable for neutrino mass models based on discrete family symmetries, e.g. A4


• Contributions from Flavon VEVs  (1,0,0) and (1,1,1)

• five independent “basis” matrices


• RG correction: essentially along PIII = diag(0,0,1) direction due to yτ dominance

• kinetic term corrections can be along different directions than RG: PI - PV 


• nontrivial flavor structure can be induced

• non-zero CP phase can be induced


M.-C.C, M. Fallbacher, M. Ratz, C. Staudt (2012)

Corrections to Kinetic Terms

• Corrections to the kinetic terms induced by family symmetry breaking generically 
are present, should be properly included
• can be along different directions than RG corrections
• dominate over RG corrections (no loop suppression, copious heavy states)
• sizable for neutrino mass models based on discrete family symmetries, e.g. A4

• Contributions from Flavon VEVs  (1,0,0) and (1,1,1)
• five independent “basis” matrices

• RG correction: essentially along PIII = diag(0,0,1) direction due to yτ dominance

• Kähler corrections can be along different directions than RG

M.-C.C, M. Fallbacher, M. Ratz, C. Staudt (2012)
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In appendix B we derive simple analytic formulae that allow us to understand the
the impact of such corrections on the mixing parameters. Applying these formulae, one
can express the changes of the mixing parameters for a given form P of the Kähler
correction. For example, for a Kähler correction of the form P
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where � = v/⇤, ⇤ being the cut–o↵ scale and v being the flavon VEV.

3.1 Reconsideration of the example models

Using the results from the foregoing section, we can compute the Kähler corrections
which arise in the example models discussed in Section 2.1 and see how the predictions
change.

4 Conclusions
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An Example: Enhanced θ13 in A4
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Figure 2: Change of θ13 due to the Kähler correction ∆K shown in equation (3.8) for
κV v2/Λ2 = (0.2)2. The continuous line shows the result of equation (3.9), which was
obtained using a linear approximation (cf. section 3.4), while the dashed line shows the
result of a numerical computation. As one can see, the linear approximation yields a
very accurate estimate on the true change ∆θ13.

consistent with the expectation, as m1 → O(0.1 eV) corresponds to the near degenerate
regime for the neutrino masses, where an enhanced correction to the mixing angle is
expected.

In contrast to the case of θ13, the changes of θ12 and θ23 are predicted to be zero if one
uses the linear extrapolation of their changes starting from the tri–bi–maximal mixing
pattern. However, as we have seen above, θ13 can undergo a substantial change such
that also the other two mixing angles change due to higher order non-linear terms. We
have confirmed this behavior numerically, using the MixingParameterTools package [13].
The dependence of the change on the lightest neutrino mass m1 is shown in figure 3.
Both changes are significantly smaller than the one of θ13.

A further interesting consequence of the Kähler correction is the generation of CP
violation. It arises due to the fact that the matrix PV is complex. In fact, the Dirac CP
phase δ, which is not properly defined for exact tri–bi–maximal mixing due to θ13 = 0, is
close to δ = 3π/2 taking into account the corrections. Note that similar relations can also
be obtained from the holomorphic superpotential in models with T ′ flavor symmetry [14].

The chosen example illustrates that predictions which are solely based on the in-
spection of the superpotential are not very reliable. Indeed, for example, the global fit
value for θ13 =

(

8.93+0.46
−0.48

)◦
[10] (cf. table 2.1) can be accommodated without resorting

to higher–order contributions from the superpotential, provided the neutrino mass spec-
trum is not too hierarchical, the ratio of flavon VEV to the fundamental scale v/Λ is of
the order of the Cabibbo angle and the Kähler coefficient κV is of order one.

Our result also shows that the Kähler corrections can be more significant than the
effects of the RG evolution.
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Figure 2: Change of θ13 due to the Kähler correction ∆K shown in equation (3.8) for
κV v2/Λ2 = (0.2)2. The continuous line shows the result of equation (3.9), which was
obtained using a linear approximation (cf. section 3.4), while the dashed line shows the
result of a numerical computation. As one can see, the linear approximation yields a
very accurate estimate on the true change ∆θ13.

consistent with the expectation, as m1 → O(0.1 eV) corresponds to the near degenerate
regime for the neutrino masses, where an enhanced correction to the mixing angle is
expected.

In contrast to the case of θ13, the changes of θ12 and θ23 are predicted to be zero if one
uses the linear extrapolation of their changes starting from the tri–bi–maximal mixing
pattern. However, as we have seen above, θ13 can undergo a substantial change such
that also the other two mixing angles change due to higher order non-linear terms. We
have confirmed this behavior numerically, using the MixingParameterTools package [13].
The dependence of the change on the lightest neutrino mass m1 is shown in figure 3.
Both changes are significantly smaller than the one of θ13.

A further interesting consequence of the Kähler correction is the generation of CP
violation. It arises due to the fact that the matrix PV is complex. In fact, the Dirac CP
phase δ, which is not properly defined for exact tri–bi–maximal mixing due to θ13 = 0, is
close to δ = 3π/2 taking into account the corrections. Note that similar relations can also
be obtained from the holomorphic superpotential in models with T ′ flavor symmetry [14].

The chosen example illustrates that predictions which are solely based on the in-
spection of the superpotential are not very reliable. Indeed, for example, the global fit
value for θ13 =

(

8.93+0.46
−0.48

)◦
[10] (cf. table 2.1) can be accommodated without resorting

to higher–order contributions from the superpotential, provided the neutrino mass spec-
trum is not too hierarchical, the ratio of flavon VEV to the fundamental scale v/Λ is of
the order of the Cabibbo angle and the Kähler coefficient κV is of order one.

Our result also shows that the Kähler corrections can be more significant than the
effects of the RG evolution.
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Corresponding Change in θ12
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Figure 3: Changes of (a) θ12 and (b) θ23 due to the Kähler correction ∆K shown in
equation (3.8) for κV v2/Λ2 = (0.2)2 computed numerically.

4 Conclusions

We have carefully re–examined models in which different flavons appear to break a given
flavor symmetry GF down to different subgroups in different sectors of the theory. In the
context of supersymmetric settings, the fact that there is no residual symmetry in the
full Lagrangean manifests itself in corrections to the Kähler potential K that break GF

in all subsectors. We have argued that the corresponding higher–order terms in K are, in
a way, unavoidable as they cannot be forbidden by any (conventional) symmetry. These
terms come with certain coefficients, which are not determined by the symmetries of the
model and, therefore, introduce additional continuous parameters. We have also argued
that the Kähler corrections are generically much larger and, therefore, more relevant
than renormalization effects, which can also be understood as Kähler corrections along
a very specific direction.

In order to make our analysis more concrete, we have outlined the discussion of
the corrections in a model based on the flavor symmetry GF = A4 × 4 [8]. We have
presented the first results of an analytic discussion of the Kähler corrections, i.e. a simple
analytic formula that allows us to express the change in the prediction on the mixing
parameters induced by the respective flavon VEVs. While leaving the full discussion
for a future publication [4], we have explicitly shown that in the simple A4 model,
which predicts tri–bi–maximal mixing at leading order, one of the flavon VEVs induces
a large variation of the mixing angle θ13 while leaving the other mixing angles essentially
unchanged. An optimistic interpretation of this possibility may amount to the statement
that even simple models like the one discussed here can be consistent with the recent
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Figure 2: Change of θ13 due to the Kähler correction ∆K shown in equation (3.8) for
κV v2/Λ2 = (0.2)2. The continuous line shows the result of equation (3.9), which was
obtained using a linear approximation (cf. section 3.4), while the dashed line shows the
result of a numerical computation. As one can see, the linear approximation yields a
very accurate estimate on the true change ∆θ13.

consistent with the expectation, as m1 → O(0.1 eV) corresponds to the near degenerate
regime for the neutrino masses, where an enhanced correction to the mixing angle is
expected.

In contrast to the case of θ13, the changes of θ12 and θ23 are predicted to be zero if one
uses the linear extrapolation of their changes starting from the tri–bi–maximal mixing
pattern. However, as we have seen above, θ13 can undergo a substantial change such
that also the other two mixing angles change due to higher order non-linear terms. We
have confirmed this behavior numerically, using the MixingParameterTools package [13].
The dependence of the change on the lightest neutrino mass m1 is shown in figure 3.
Both changes are significantly smaller than the one of θ13.

A further interesting consequence of the Kähler correction is the generation of CP
violation. It arises due to the fact that the matrix PV is complex. In fact, the Dirac CP
phase δ, which is not properly defined for exact tri–bi–maximal mixing due to θ13 = 0, is
close to δ = 3π/2 taking into account the corrections. Note that similar relations can also
be obtained from the holomorphic superpotential in models with T ′ flavor symmetry [14].

The chosen example illustrates that predictions which are solely based on the in-
spection of the superpotential are not very reliable. Indeed, for example, the global fit
value for θ13 =

(

8.93+0.46
−0.48

)◦
[10] (cf. table 2.1) can be accommodated without resorting

to higher–order contributions from the superpotential, provided the neutrino mass spec-
trum is not too hierarchical, the ratio of flavon VEV to the fundamental scale v/Λ is of
the order of the Cabibbo angle and the Kähler coefficient κV is of order one.

Our result also shows that the Kähler corrections can be more significant than the
effects of the RG evolution.
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Corresponding Change in θ23
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Figure 3: Changes of (a) θ12 and (b) θ23 due to the Kähler correction ∆K shown in
equation (3.8) for κV v2/Λ2 = (0.2)2 computed numerically.

4 Conclusions

We have carefully re–examined models in which different flavons appear to break a given
flavor symmetry GF down to different subgroups in different sectors of the theory. In the
context of supersymmetric settings, the fact that there is no residual symmetry in the
full Lagrangean manifests itself in corrections to the Kähler potential K that break GF

in all subsectors. We have argued that the corresponding higher–order terms in K are, in
a way, unavoidable as they cannot be forbidden by any (conventional) symmetry. These
terms come with certain coefficients, which are not determined by the symmetries of the
model and, therefore, introduce additional continuous parameters. We have also argued
that the Kähler corrections are generically much larger and, therefore, more relevant
than renormalization effects, which can also be understood as Kähler corrections along
a very specific direction.

In order to make our analysis more concrete, we have outlined the discussion of
the corrections in a model based on the flavor symmetry GF = A4 × 4 [8]. We have
presented the first results of an analytic discussion of the Kähler corrections, i.e. a simple
analytic formula that allows us to express the change in the prediction on the mixing
parameters induced by the respective flavon VEVs. While leaving the full discussion
for a future publication [4], we have explicitly shown that in the simple A4 model,
which predicts tri–bi–maximal mixing at leading order, one of the flavon VEVs induces
a large variation of the mixing angle θ13 while leaving the other mixing angles essentially
unchanged. An optimistic interpretation of this possibility may amount to the statement
that even simple models like the one discussed here can be consistent with the recent
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Figure 2: Change of θ13 due to the Kähler correction ∆K shown in equation (3.8) for
κV v2/Λ2 = (0.2)2. The continuous line shows the result of equation (3.9), which was
obtained using a linear approximation (cf. section 3.4), while the dashed line shows the
result of a numerical computation. As one can see, the linear approximation yields a
very accurate estimate on the true change ∆θ13.

consistent with the expectation, as m1 → O(0.1 eV) corresponds to the near degenerate
regime for the neutrino masses, where an enhanced correction to the mixing angle is
expected.

In contrast to the case of θ13, the changes of θ12 and θ23 are predicted to be zero if one
uses the linear extrapolation of their changes starting from the tri–bi–maximal mixing
pattern. However, as we have seen above, θ13 can undergo a substantial change such
that also the other two mixing angles change due to higher order non-linear terms. We
have confirmed this behavior numerically, using the MixingParameterTools package [13].
The dependence of the change on the lightest neutrino mass m1 is shown in figure 3.
Both changes are significantly smaller than the one of θ13.

A further interesting consequence of the Kähler correction is the generation of CP
violation. It arises due to the fact that the matrix PV is complex. In fact, the Dirac CP
phase δ, which is not properly defined for exact tri–bi–maximal mixing due to θ13 = 0, is
close to δ = 3π/2 taking into account the corrections. Note that similar relations can also
be obtained from the holomorphic superpotential in models with T ′ flavor symmetry [14].

The chosen example illustrates that predictions which are solely based on the in-
spection of the superpotential are not very reliable. Indeed, for example, the global fit
value for θ13 =

(

8.93+0.46
−0.48

)◦
[10] (cf. table 2.1) can be accommodated without resorting

to higher–order contributions from the superpotential, provided the neutrino mass spec-
trum is not too hierarchical, the ratio of flavon VEV to the fundamental scale v/Λ is of
the order of the Cabibbo angle and the Kähler coefficient κV is of order one.

Our result also shows that the Kähler corrections can be more significant than the
effects of the RG evolution.
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Origin of CP Violation

• CP violation ⇔ complex mass matrices


• Conventionally, CPV arises in two ways:


• Explicit CP violation: complex Yukawa coupling constants Y


• Spontaneous CP violation: complex scalar VEVs  <h>


• Complex CG coefficients in certain discrete groups ⇒ explicit CP violation  

• CPV in quark and lepton sectors purely from complex CG coefficients

3

which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,

UT
TBM

MνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)
v2

u

MX
,

≡ diag(m1, m2, m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U †
Rγ0MuQL)† = QLM †

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(x⃗, t) = αO(x⃗, t) + α∗
O

†(x⃗, t) , (19)

where O(x⃗, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(x⃗, t)
CP−→ O

†(−x⃗, t) , α
CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(x⃗, t)
T−→ O(x⃗,−t) , α

T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,

Mu

ytvu
=

⎛

⎜

⎝

ig 1−i
2

g 0
1−i
2

g g + (1 − i
2
)h k

0 k 1

⎞

⎟

⎠
, (25)

Md, MT
e

ybvdφ0ζ0
=

⎛

⎜

⎝

0 (1 + i)b 0

−(1 − i)b (1,−3)c 0

b b 1

⎞

⎟

⎠
, (26)

With b ≡ φ0ψ′
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′3

0 =
−9 × 10−6, the following mass ratios are obtained, md :
ms : mb ≃ θ4.7

c : θ2.7

c : 1, mu : mc : mt ≃ θ8

c : θ3.2

c : 1,
with θc ≃

√

md/ms ≃ 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 ≃ mb/mt ≃ 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
CKM matrix is,

⎛

⎜

⎝

0.975e−i26.8o

0.225ei21.1o

0.00293ei164o

0.224ei124o

0.974e−i8.19o

0.032ei180o

0.00557ei103o

0.0317e−i7.33o

0.999

⎞

⎟

⎠
. (27)

The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg

(

−VcdV ∗
cb

VtdV ∗
tb

)

= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg

(

−VtdV ∗
tb

VudV ∗
ub

)

= 114o , (29)

γ ≡ arg

(

−VudV ∗
ub

VcdV ∗
cb

)

= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45 × 10−5 , (31)

where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have
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which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,
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MνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)
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While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U †
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The hermiticity of the Lagrangian allows us to write, in
general,
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where O(x⃗, t) is some operator and α is some c-number.
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particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,
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CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,
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T−→ O(x⃗,−t) , α

T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,
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UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i
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The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
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c : 1,
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√
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of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 ≃ mb/mt ≃ 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
CKM matrix is,

⎛

⎜

⎝

0.975e−i26.8o

0.225ei21.1o

0.00293ei164o

0.224ei124o

0.974e−i8.19o

0.032ei180o

0.00557ei103o

0.0317e−i7.33o

0.999

⎞

⎟

⎠
. (27)

The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg

(

−VcdV ∗
cb

VtdV ∗
tb

)

= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg

(

−VtdV ∗
tb

VudV ∗
ub

)

= 114o , (29)

γ ≡ arg

(

−VudV ∗
ub

VcdV ∗
cb

)

= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45 × 10−5 , (31)

where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have
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CG coefficients in non-Abelian discrete symmetries  
➪ relative strengths and phases in entries of Yukawa matrices 

➪ mixing angles and phases (and mass hierarchy)



 Group Theoretical Origin of CP Violation

• Scalar potential: if Z3 symmetric ⇒〈∆1〉= 〈∆2〉=〈∆3〉≡〈∆〉 real


• Complex effective mass matrix: phases determined by group theory 
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1   R
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coefficients of 

G
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physical CP 
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u has to be a class-inverting,   
        involuntory automorphism of G 
➪ non-existence of such automorphism  
        in certain groups 
➪ explicit physical CP violation in  
        generic setting

M.-C.C, M. Fallbacher, K.T. Mahanthappa, 
M. Ratz, A. Trautner, NPB (2014)

unitary 
transformation U examples: T7, ∆(27), …..

For further insights, see M. 
Fallbacher,  A. Trautner, NPB (2015)



‣ naturally small Dirac neutrino masses can arise


‣ Randall-Sundrum model: wave function overlap


‣ Supersymmetry breaking


‣ before SUSY breaking: absence of Dirac neutrino masses (as well as Weinberg operator)


‣ after SUSY breaking: realistic effective Dirac neutrino masses generated


‣ similar to the Giudice-Masiero Mechanism for the mu problem 


‣ Need a symmetry reason for the absence of these operators before SUSY breaking
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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A Anomaly coefficients for R
M symmetries with ar-

bitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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The μ Term and Dirac Neutrino Mass

‣ Absence of perturbative mu term ⇒ constraints on R charges of Hu, Hd  

‣ Absence of perturbative Weinberg operator ⇒ constraints on R charges of leptons

‣ New signature: ΔL = 4 lepton number violation (no ΔL = 2 violation)
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is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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➜ non-perturbative mu term ~ TeV automatically arise
 ➜ Giudice-Masiero mechanism at work, automatically!

➜ non-perturbative, realistic Dirac neutrino mass 
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The μ Term and Dirac Neutrino Mass

‣ Absence of perturbative mu term ⇒ constraints on R charges of Hu, Hd  

‣ Absence of perturbative Weinberg operator ⇒ constraints on R charges of leptons

‣ New signature: ΔL = 4 lepton number violation (no ΔL = 2 violation)
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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A Anomaly coefficients for R
M symmetries with ar-

bitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)

15

Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
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4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
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µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
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are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
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will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
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is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†
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will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
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M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
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imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
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severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;

9

M.-C.C, M. Ratz, C. Staudt, P.  Vaudrevange, Nucl. Phys. B866 (2013) 157 

➜ non-perturbative mu term ~ TeV automatically arise
 ➜ Giudice-Masiero mechanism at work, automatically!

➜ non-perturbative, realistic Dirac neutrino mass 
automatically arise

⟨W⟩

Mu-Chun Chen, UC Irvine                                                                                                                                                                   RWTH Aachen, 06/16/2014

Hidden sector:
SUSY    ⟨W⟩
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Arkani-Hamed, Hall, Murayama, Tucker-Smith, Weiner (2001) 



Dirac Neutrinos and SUSY Breaking

• Simultaneous realization of these two scenarios can arise in MSSM with discrete R 
symmetries,       


‣ neutrinos are of the Dirac type, with naturally small masses

‣ ∆ L = 2 operators forbidden to all orders ⇒ no neutrinoless double beta decay


‣ New signature: lepton number violation ∆L = 4 operators, (νR)4, allowed ⇒ new 
LNV processes, e.g. 
• neutrinoless quadruple beta decay


• mu term is naturally small, simultaneously

• dangerous proton decay operators forbidden/suppressed 

• may simultaneously explain the flavor structure with discrete generation dependent  R 

symmetries  (even with non-Abelian!)

• Dynamical generation of RPV operators with size predicted, different processes correlated
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Summary

• Fundamental origin of fermion mass hierarchy and flavor mixing still not known

• Neutrino masses: evidence of physics beyond the SM

• Symmetries: can provide an understanding of the pattern of fermion masses and 

mixing

• Grand unified symmetry + discrete family symmetry ⇒ predictive power 


• Symmetries lead to testable predictions:

• interesting leading order sum rules between quark & lepton mixing parameters

• lepton flavor violating charged lepton decays 

• proton (nucleon) decay, neutron-antineutron oscillation 


• corrections to kinetic terms need to be properly included

• Discrete Groups (of Type I) affords a Novel origin of CP violation:  

• Complex CGs ⇒ Group Theoretical Origin of CP Violation  

• as a R-symmetry: Dirac neutrino + solving problems in MSSM 
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